Las radiaciones ionizantes, sus efectos y aplicación

En muchas de las ocasiones al escuchar el término "radiación", lo asociamos, principalmente, a algo negativo. Sin embargo, la existencia de las radiaciones es más benéfica de lo que se piensa, siempre que se maneje de forma responsable. Las radiaciones tienen una gran diversidad de aplicaciones que contribuyen a mejorar el nivel de vida de las personas.

La radiación es el transporte y propagación de energía en forma de ondas electromagnéticas (OEM). Existen diversos tipos de radiaciones y éstas pueden ser clasificadas de diferentes maneras. Se clasifican en base a parámetros de la onda como son su frecuencia, su longitud de onda o su energía. En la figura 1 se muestra una gráfica del espectro electromagnético donde las ondas electromagnéticas se presentan en base a su frecuencia y su longitud de onda.

En la gráfica del espectro OEM de la figura 1, se incluyen las ondas asociadas a la energía eléctrica que usamos en casa que tiene baja frecuencia, 60 Hertz, y por tanto gran longitud de onda. También se incluyen las OEm correspondientes a las señales de la radio, la televisión, el teléfono celular, etc. La luz que vemos, con diferentes colores, son también OEM, así como los rayos X y los rayos gamma. Una característica de todas las OEM, sin importar su longitud de onda o su frecuencia, es que en el vacío viajan a 300,000 km/s.

Desde las ondas de menor frecuencia hasta la luz ultravioleta, forman un grupo de OEM que no son ionizantes, esto implica que no tienen la energía suficiente para arrancar electrones a los átomos. Aquellas que están más allá de la luz ultravioleta, como los rayos X, los rayos gamma y los cósmicos, son radiaciones ionizantes (RI), lo que implica que en su interacción con la materia, si tienen la capacidad de arrancar electrones y de dejar los átomos excitados.

En forma genérica se le llama radiación ionizante a las partículas alfa y beta (que tienen masa y carga eléctrica), así como a los rayos X y a los rayos gamma. La radiación alfa, beta y gamma se produce en los núcleos de los átomos, mientras que los rayos X se producen en las capas de los electrones de los átomos. Todas estas se incluyen en el grupo de las RI.

Las RI pueden atravesar la materia, como se observa en la figura 2. En esta figura se incluyen los neutrones que no ionizan la materia ya que no tienen carga eléctrica, no obstante forman parte del grupo conocido genéricamente como radiación.
Figura 2. Poder de penetración de las RI en la materia.

Cuando la radiación interactúa con el cuerpo humano, deposita una cantidad de energía. La cantidad de energía absorbida por unidad de masa del cuerpo se conoce como dosis absorbida y ésta puede producir dos tipos de efectos: estocásticos y determinísticos. En los primeros, la probabilidad de ocurrencia de que se presente algún daño, a causa de la dosis recibida por la radiación, no está establecida ya que pueden o no presentarse debido a que las dosis recibidas son pequeñas. Sin embargo, cuando esta dosis aumenta deja de ser estocástico el efecto, convirtiéndose en determinístico. Es decir, cuando se supera cierto umbral de dosis, la aparición de los efectos es al instante o en un corto plazo de tiempo.

En la industria, las radiaciones se utilizan para detectar deficiencias en piezas metálicas, rupturas en la soldadura de uniones o en la superficie de los materiales. Se emplean, también, para medir el nivel de líquidos en grandes recipientes, se usan para polimerizar monómeros, para la medición de humedades de suelos (neutrónes), determinar fugas en tubos que llevan combustible (gasolina o gas) y para la detección de humo con partículas alfa y beta. En seguridad, se usan los rayos X para la revisión de equipajes; y, en cambio, la irradiación gamma se utiliza para la esterilización de alimentos, control de plagas, detección fósil mediante técnicas no destructivas, esterilización y en la mejora genética de alimento, entre otras aplicaciones. La radiación también se utiliza con fines analíticos y permite determinar la presencia de cantidades muy pequeñas de sustancias nocivas a la salud. Una aplicación muy importante es en la producción de energía eléctrica que se realiza en las centrales nucleares.

La medicina es una de las áreas que ha sido más beneficiada con las RI. En este campo de trabajo, los usos van desde la esterilización de material quirúrgico, hasta el diagnóstico y tratamiento de enfermedades como el cáncer. Las técnicas más empleadas son la radiografía, la tomografía computarizada (TC), la mamografía y la tomografía por emisión de positrones (PET), entre otras. Uno de sus principales usos es el tratamiento contra el cáncer a través de la radioterapia y la medicina nuclear.

El beneficio que se ha logrado, en base a la aplicación de las RI, supera por mucho la percepción negativa que se pudiera tener sobre los efectos de éstas. Empleadas de forma adecuada y con las medidas de seguridad que deben ser consideradas en protección radiológica, el uso de estas radiaciones constituye un gran beneficio para la humanidad. Para el uso adecuado de las RI es necesario entender cómo interactúan con la materia y esto se logra a través del estudio y la investigación científica.

Referencias